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Abstract--The effects of rotation and magnetic field on the onset of oscillatory modes of BCnard-Marangoni 
instability in a horizontal fluid layer with a deformably free surface are investigated numerically. The 
derived eigenvalue equations are solved using the fourth order Rung+Kutta-Gill’s method coupled with 
the Broyden’s method. The results show that the Crispation number C, associated with the deformation 
of the upper surface, is significant on the Btnard-Marangoni instability. The system is stabilizing, as the 
Biot number Bi, the Bond number Bo, the Taylor number F and the Chandrasekhar number Q increase. 
The absolute value of critical Marangoni number IMcI in the (IL&~, R)-plane decreases linearly with 

increasing Rayleigh number R. 0 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

A horizontal fluild layer with its upper surface deform- 
ably free is heated from below, the convective insta- 
bility might set in as a result of the thermal buoyancy, 
the thermal vari,ation of the surface tension or both, 
correspondently the Rayleigh-BCnard instability [l- 
41 the Marangoni instability [5, 61 or the BCnard- 
Marangoni instability [7-lo]. The BCnard-Marangoni 
instability has received much consideration in many 
engineering problems, the oil extraction from a porous 
media, the energy storage in molten salts, the crystal 
growth in space and paints, colloids and detergents in 
chemical engineering. In reality, a free surface is sub- 
ject to deformation under normal and shear stresses, 
unless the surface tension is infinitely strong. &riven 
and Sternling [8]1 and Smith [9] studied the cases with 
the upper surface free and nondeformable. While 
Davis and Homsy [lo] considered the deformable one. 

The analyses above were limited to cases of station- 
ary modes with oscillatory ones ignored. Taking into 
account the Crispation effect, the appearance of oscil- 
latory modes became possible [ 11, 121. For either Ray- 
leigh-BCnard instability or Marangoni instability, the 
effect of rotation is a stabilizing factor [ 1, 13-151. An 
extra effect of a uniform magnetic field is added to the 
problem [l&22]. The primary objective of the study 
does include erects of both rotation and magnetic 
field to the onset of oscillatory modes of the BCnard- 
Marangoni instability. In the linear stability theory 
we take the small disturbances in the form of exp (c-t), 
where t is the time. And c = o’r + icr, is the reaction of 
the disturbances to the system, 6, is the growth rate 
and 0, is the frequency, respectively. If gi # 0 when 
Q, = 0, there is the state of oscillatory instability mode 

and the disturbances will oscillate in time with no 
increase in infinitesimal amplitude [2,3, 11, 12, 17,2& 
221. In this study, we calculate the critical Marangoni 
number M, and frequency oi as function of the effects 
of rotation and magnetic field on the onset of an 
oscillatory modes of BCnard-Marangoni instability. 
The effects of Crispation number C at a deformable 
upper free surface and relevant physical parameter of 
fluid layer are also considered. 

MATHEMATICAL FORMULATION 

An infinitely horizontal fluid layer of thickness L, 
subject to a uniform rotation about the vertical axis 
with the angular velocity Q and a uniform vertical 
magnetic field H = (0, 0, H), is considered, as shown 
in Fig. 1. The lower boundary of the fluid layer is 
bounded with an isothermal and rigid slab of tem- 
perature T,. The upper boundary is deformably free 
and the.variation of surface tension y with the tem- 
perature T is assumed [6-12, 16, 18-221, 

Y = yo--z(T- T,) (1) 

where y0 and T,, are referential values of surface ten- 
sion and temperature, respectively, and z is the rate of 
change with the temperature. The equation of state 
for the density p is 

P = ~011 -4T- TON (2) 
where cz is the coefficient of thermal expansion and p0 
is the density at the reference temperature TO. The 
kinematic viscosity v, thermal diffusivity K, con- 
ductivity K, magnetic permeability JJ and electrical 
resistivity q are assumed independent of the tempera- 
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NOMENCLATURE 

wavenumber of the small disturbance 
Biot number, hL/K 
Bond number, pgL’/y 
Crispation number, pw/yL 
gravitational acceleration 
heat transfer coefficient 
magnetic field 
z-component of magnetic field 
thermal conductivity 
thickness of fluid layer 
Marangoni number, zATL/pvk- 
Prandtl number, V/K 
Chandrasekhar number, pH2L2/pvq 
Rayleigh number, c(gATL’/vK- 
time 
temperature 
temperature at bottom wall 
Taylor number, 4Q2L4/v2 
z-dependent amplitude of velocity 
z-dependent normal mode amplitude 
of non-dimensional velocity 

x, y, z coordinates 
Z magnitude of the disturbance of the 

nondimensional surface deflection. 

Greek symbols 
c? thermal expansion coefficient of the 

fluid density 

LT 

i 

B 

0 

K 

P 

V 

surface tension 
the difference of temperature across 
the fluid layer 
z-dependent normal mode amplitude 
of nondimensional vertical velocity 
electrical resistivity 
magnitude of the disturbance of 
temperature 
normal mode magnitude of the 
disturbance of nondimensional 
temperature 
thermal diffusivity 
magnetic permeability 
kinematic viscosity of fluid 

5(x, y, t) position of the upper free surface 

P density of fluid 
Z surface tension gradient with respect 

to temperature, ay/aT 
or, q real and imaginary growth rates with 

time 
R uniform angular velocity. 

Subscript 
0 referential quantity 
C critical state. 

Superscript 
, perturbed quantity. 

ture, except for surface tension y and density p. The and y axes in the plane of the rigid lower boundary 
Boussinesq approximation is assumed (except for the and the z axis vertically upwards. Then the lower 
surface tension) to be varying with the temperature boundary is given by z = 0 and the upper free surface 
[l-5, 7, 201. To formulate the system mathematically, at the undisturbed state is located at z = L. When 
we take the Cartesian coordinate system with the x motion occurs the upper free surface of the liquid 

free surface u+ _ _ _ _ _ _ _ ______.___ ___________ __________ ___ 

H 
Fig. 1. Physical model. 
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layer will be deformably with its position at 
z = L+5(x,r, t). 

A set of dimension [L, L2/~, K/L, AT, rc/L2] is chosen 
for coordinates (x,y,z), time (t), velocity (w’), tem- 
perature (0’) and, vertical vorticity (i’), respectively. 
The perturbation quantities in normal mode forms 
are 

e II! j (’ = z 
TF; exp[i(u,x+u,y)+at] (3) 

r Z 

where a, and aY are wavenumbers of disturbances in 
the x and y direclzions, respectively. W, 0, [ and Z are 
amplitudes of vertical velocity, temperature, vertical 
vorticity and deflection of the free upper surface, 
respectively. The governing equations of the per- 
turbed state in dimensionless forms, assuming the 
Boussinesq approximation, are 

[ 
2 __(D2-a2) [ = y”2DW 

1 
(4) 

= a2R0 (5) 

[io,-(D2-a’)]@-- W = 0 (6) 

where D = d/dz and a = dw is the wavenumber. 
The Prandtl number Pr, Rayleigh number R, Chan- 
drasekhar number Q and Taylor number F are 
defined, respectively, as 

Pr == V/K, R = ugATL3/wc, 

Q = p.H2L2/pvq, F = 4n2L4/v2. (7) 

The boundary conditions at the deformably free upper 
surface, at z = 1, are 

W = iqZ @a) 

(D+Bi)O = BiZ (8b) 

(D2+a2)W+Ma20-Ma’Z= 0 (8~) 

C 2 -(D2-3,z2)+Q 
[. 1 DW+(Bo+a2)a2Z 

+ CF”2 < = 0 (8d) 

DC = 0 (8e) 

where the Crispation number C, Biot number Bi, 
Bond number Bo and Marangoni number M are 
defined, respectively, as 

C = pv~/yL, Bi = hL/K, 

Bo = pgL2/y, M = ‘t &%/PvK. (9) 

The lower boundary at z = 0 is rigid and isothermal, 

W=DW=@=[=O. (10) 

NUMERICAL PROCEDURE 

The governing equations (4>-(6) and boundary con- 
ditions (8aH8e) and (10) form a Sturm-Liouville’s 
problem with the Marangoni number M being the 
eigenvalue and other physical parameters R, Pr, F, 
Q, C, Bo, Bi and a fixed. The modified shooting tech- 
nique [23, 241, based on the fourth order Runge- 
Kutta-Gill’s method, is used to solve the problem. 
Rewriting equations (4E(6) to a system of first-order 
equations, we set, for the liquid layer, 

w= u, 

D W = Du, = u2 

D2W=Du2=u3 

D3W=Du,=uq 

0 = u5 

(1 la) 

(1 lb) 

(1 w 

DO = Dug = u6 

5 = u1 

(lid) 

and we obtain 

DC = Du, = u8 (1 le) 

D4W= Du, = (2 +2a2+Q)u3-(2 +a’)a’u, 

+a2Ru,+F”2u 8 @lf) 

0% = Du, = (iai+aZ)u5-u, (I&) 

(llh) 

The shooting procedure starts from the upper 
boundary at z = 1, and tries to match the boundary 
conditions at the lower boundary at z = 0. The upper 
boundary conditions, in equations (8a)-(8e) at z = 1 
can be expressed as 

C 3iOi C CT? c ioiCQ 
u,= -~ 

Bo+a2 + (Bo+a2)a2 Pr - (Bo+a2)a2 1 u2 

io, C io. C Jr’12 

’ (Bo + a’)~’ ” - (Bo + a’)a’ ” 
(12a) 

0,’ c 3a2M C -~ 
(Bo + a’) Pr Bo+a2 

ioiM C ia,CQ MCQ ~- 
- (Bo+a’)Pr+ Bo+a2 (Bo+a’) Pr 1 u2 

iq C MC 
-+- 
Bo+a2 Bo+a2 1 u4 - M a2u5 

M CJ~-“~ id Y’/* 

Bo+a’ 
+ 1 U’ 

Bo+a2 1 W) 
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[ 

iai Bi C 3BiC 
ug= - 

BiCQ 

(Bo + a’)~’ Pr 
-~-- u2 

Bo+a2 Bofa’ 1 
BiC BiCy-‘I2 

+ (Bo+a2)a2u4-Biu5- ~Bo+a2~a2U7 (12c) 

us = 0. (124 

We shall guess four boundary conditions, 

u2 = Cl> u4 = c2, u5 = c3, and u, = c4. 

(13) 

Then the general form of the solution becomes 

where 

u = c,U,fc2U,-+‘-,U,+c,U4 (14) 

u = I”,, u2> u3, u43 u5, u6, ul, %,I’ (15a> 

u, = 4 C 3iaiC I 
Bo+u2 (Bo+a2)a2 Pr 

ia, C Q 1 3a2ia, C ia, C ~- 
- (Bo+a2)a2’ ’ Bo+a2 (Bo+u2)Pr 

3a2MC ia,MC ia, C Q -~ - 
Bo+a2 (Bo + a’) Pr 

f- 
Bo+a’ 

MCQ 00 
ia, Bi C 

-(Bo+a’)Pr’ ’ ’ -(Bo+a2)a2 Pr 

3BiC BiCQ 1 
T _~_ 

Bo + a2 (Bo + a’)~” 
,090 (15b) 

u, = ia, C iai C 

Bou2+a4’ 
o,- ~ 

Bo+a2 

MC 
l,O,- 

BiC T 
+- 

Bo+u2’ (Bo + a2)u 
,>O,O 

I 
(15c) 

U, = [0,0,-Ma2,0,1,-Bi,0,0]T (154 

ia CJc’12 
’ 

(Bo + a’)u’ ’ 
o _ Mia, C.T’j2 

(Bo+a’) 

We may guess a value for M and assume each of 
uz,i= 1,2,X,4 in equations (15bt( 15e) as a set of initial 
conditions. We then start the shooting procedure, 
using the Rung+Kutta-Gill’s method of order four, 
from z = 1 and try to match the lower boundary con- 
ditions at z = 0. The results finally turn into a matrix 
form, 

where the superscript indicates the element of 

ui,i= 1,2,X,4. The determinant in equation (16) is 
complex, but its real and imaginary parts should van- 
ish for c, being nontrivial. The eigenvalue problem is 
established as 

f(iai, R, M, Pr, F-, Q, C, Bo, Bi, a) = 0 (17) 

wherefis the determinant of the coefficient matrix. 
The equation (17) can be solved directly, using the 

iterative Broyden’s method [23, 241, and the eigen- 
value and the frequency ei are thus obtained. An initial 
approximation x(O) = (x,, x*)~ = [M, ia,]’ (or [R, ia#‘) 
and the Jacobian matrix J(x(“) are needed, where 

J(X(oi)=J(X)ii=~, for i,j= 1,2. (18) 
/ 

Then a corrected matrix A (‘I = J(x(“)) gives rise to the 
result, 

x(‘) = xVJ)_ [A(O)]- ‘f(x’o’), (19) 

In each step following (n), we obtain a newly corrected 
matrix, 

[/p’]- I = [A”- I’]- I 

where y(“) = J‘(x(“)) -f(x(“- ‘1) and s(n) = x”) _ xc”- 1). 

The new approximation is then achieved iteratively. 

x(x+ 1) = xw_ [/p’]- tf(x’“‘). (21) 
The iteration is terminated when the determinant f is 
less than a tolerance. The critical Marangoni number 
M,, being the minimum one on the marginal surfaces 
of the (a, M, ia) space, marks the onset of convective 
instability at the marginal state. The convection is 
stationary or oscillatory, depending on whether the a, 
is vanishing or nonvanishing. 

RESULTS AND DISCUSSION 

In order to validate the above numerical algorithm, 
we first concentrate on the Marangoni instability 
problem without the thermal buoyancy (i.e., R = 0). 
For the Crispation number C in the range 10-6-10-‘, 
the present results of M,, a, and sic are calculated and 
very well compared with those previous ones [12], as 
listed in Table 1 for the case of Pr = 1, Bo = 0.1 and 
Bi = 0. A negative value of Marangoni number, 
M < 0, related to an increasing surface tension with 
an increasing temperature, has been shown and pre- 
dicted to be a main factor of causing the appearance of 
oscillatory modes for the pure Marangoni convection 
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Table 1. Numerically calculated values of M,, a, and (T,, for different values of C and Pr on the oscillatory instability of 
Marangoni convection without the thermal buoyancy and the magnetic field. (Bo = 0.1, Bi = 0 and Y = Q = R = 0) 

C 

Data of [12] Present study 
Pr = 1.0 Pr = 1.0 Pr = 0.1 

W a, c,c M, 0, c1.z M, a, crc 

0 
10-G - 62785.97 0.08 26 -62785.117 0.080 26.106 -27339.290 0.073 7.551 
10-5 -8fi54.13 0.18 21 -8552.231 0.178 20.775 - 3331.287 0.131 4.561 
lo-4 -1896.11 0.34 17 - 1895.632 0.346 16.551 - 545.415 0.232 3.010 
lo-’ - 1075.92 0.59 17 - 1075.895 0.591 16.610 - 144.761 0.391 2.216 
10-Z - 1044.56 0.28 6.7 - 1043.880 0.283 6.753 -70.086 0.517 1.572 
10-l - 1016.23 0.28 6.7 - 1015.898 0.282 6.584 -65.541 0.538 1.316 

[12, 16,211. For the reason, no oscillatory modes were 
found for M > 0. The critical Marangoni number in 
the absolute form ]MJ and its associated frequency tic 
as functions of the Crispation number C for selected 
values of the Prandtl number Pr are plotted in Fig. 
2(a) and 2(b): here we choose Bo = 0.1 and 
Bi=R=Q=gT= 0. The results show that the criti- 
cal conditions ]P4J and bit do decrease with the Cris- 
pation number (C. The Crispation number C, associ- 
ated with the inverse effect of the surface tension, 
shows the rigidity of the free upper surface. For the 
Crispation number C vanishing, the upper surface, 
subject to an inmrite surface tension, is free and flat, 
the system becomes more stabilizing such that the 
pure Marangoni instability sets in stationarily. For 
oscillatory modes to be possible, larger values of the 
Crispation num.ber C, allowing the free upper surface 
to deform, are required to achieve smaller values of 
IM,I. As well, influences of the Prandtl number Pr on 
the existence OI? oscillatory convection of the pure 
Marangoni instability are important, since the 
increasing viscosity would suppress the possible con- 
vection of Rayleigh-Benard instability, even irres- 
pective of the Crispation number C. The critical con- 
ditions lMcl and oio as shown in Fig. 2(a) and (b), 
increase with the Prandtl number Pr. 

In Table 2, a set of physically realistic values, 
C = 10m5, Pr = 0.02 and Bo = 10m2, is chosen and the 
results are compared with those previous ones [21], 
here the range of the Chandrasekhar number Q is G 
50. Figure 3(a) and (b) shows the critical conditions 
]M,I and glc as functions of the Chandrasekhar number 
Q for selected values of the Biot number Bi, here we 
choose C = lo-‘, Pr = 0.02, Bo = lo-* and 
R = 5 = 0. The critical conditions ]Mcl and cric 
increase monotonically with the Chandrasekhar num- 
ber Q, as predicted [17-221, since the presence of the 
magnetic field acts as a stabilizing effect. Thermally, 
the more the thermal energy is conducted away, the 
less it is stored in the fluid layer so that the system 
become more stabilizing. Also a perfectly insulated 
upper surface, 1% = 0, would totally prevent the ther- 
mal dissipation into the ambient surrounding, in con- 
trast to an isoth’ermal one, Bi + co. Therefore, a larger 

E 

r 

fr) 10-4 1O-3 1O-2 10-l 
Crispation number, C 

(61 lo-4 

Crispation number, C 

Fig. 2. Variations of critical conditions (a) IM,I and (b) clc 
are plotted as function of C for several values of Pr on the 
oscillatory Marangoni instability for Bo = 0.1 and 

Bi=R=Qz_T=C). 

value of the Biot number Bi would lead to a higher 
value of [MCI and, as well, a larger value of uic. 

Figure 4(a) and (b) shows the critical conditions 
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Table 2. Numerically calculated values of A4,, a, and ce for different values of Q and Bi on the oscillatory instability of 
Marangoni convection without the thermal buoyancy. (C = lo-‘, Pr = 0.02, Bo = lo-‘, and Y = R = 0) 

0 

1 

5 
9 

10 
20 
25 

49 

50 

- 952.403 0.2015 2.0863 
(-952.41 0.2015 2.0864) 
- 1094.296 0.2114 2.2808 

(-1094.31 0.2114 2.2803) 
- 1666.793 0.2380 2.8633 
-2267.356 0.2574 3.3418 

(-2267.37 0.2574 3.3414) 
-2423.121 0.2618 3.4562 
-4120.799 0.3019 4.5906 
- 5070.047 0.3214 5.1951 

(- 5070.04 0.3214 5.1941) 
- 10464.891 0.4224 8.7969 

(- 10464.89 0.4224 8.7974) 
- 10712.039 0.4270 8.9778 

- 1027.587 0.2071 2.1914 
(- 1027.60 0.2071 2.1916) 
- 1177.988 0.2170 2.3909 

(-1177.01 0.2170 2.3912) 
- 1784.995 0.2442 3.0002 
-2421.210 0.2643 3.5063 

(-2421.23 0.2643 3.5065) 
-2586.102 0.2689 3.6282 
-4379.575 0.3107 4.8350 
- 5378.867 0.3310 5.4780 

(-5378.86 0.3310 5.4783) 
-10989.154 0.4364 9.3186 

(-10989.154 0.4364 9.3204) 
- 11243.077 0.4412 9.5116 

- 1105.408 0.2126 2.2972 

- 1264.527 0.2225 2.5018 

- 1906.802 0.2504 3.1402 
-2579.370 0.2712 3.6746 

-2753.556 0.2759 3.8019 
-4644.101 0.3195 5.0855 
- 5693.599 0.3407 5.7707 

- 11512.085 

- 11772.261 

0.4506 

0.4555 

9.8610 

10.0629 

The values in () are obtained from Wilson [21]. 

500 Ta I I( I I I I, I I I I, I ‘lr,, I I I, I I I I, I I I,, I I,, , I I I ,, I I I II 

fe) 0 5 10 15 20 25 30 35 40 45 50 

Chandrasekhar number, Q 

(W o 5 10 15 20 25 30 35 40 45 Jo 

Chandrasekhar number, Q 

Fig. 3. Variations of critical conditions (a) IM,I and (b) oic 
are plotted as function of Q for several values of Bi on the 
oscillatory Marangoni instability for C = 10-5, Pr = 0.02, 

a 
.$ 
‘d 

” 

1250 - 

2.0 , ,,,, ,,,, I 1,,,111, I,,,, ,,,, I,,,,, fr lb) 

1 10’ lo2 IO’ lo4 
Taylor number, .? 

Fig. 4. Variations of critical conditions (a) /M,I and (b) c,, 
are plotted as function of 9 for several values of Bo on the 
oscillatory Marangoni instability for C = lo-‘, Pr = 0.02, 

Bo=lO-‘andR=Y=O. Bi = R = 0. 
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Fig. 5. The marginal curves R(a) are plotted for several values Fig. 6. Variations of critical conditions R, are plotted as 
of C on the stability of the Rayleigh-Btnard convection for function of Q for several values of C on the stability of 

Pr=l,Bo=O.l,andBi=M=Q=~=O. the Rayleigh-Btnard convection for Pr = 1, Bo = 0.1, and 

]Mc] and eic plotted as functions of Y for selected 
values of the Bond number Bo and the Chandrasekhar 
number Q, here we choose C = 10e5, Pr = 0.02 and 
Bi = R = 0. The critical conditions IM,I and cric 
increase with the Taylor number Y-, as predicted by 
the Taylor-Proudman theorem [ 1] that all steady slow 
motions of inviscid flow in a rotating system are 
necessarily two dimensional. The effect of rotation 
suppresses the onset of the convection and raises the 
stability of the system. The Bond number Bo illus- 
trates the relative effect of gravity to surface tension 
on flattening a deformably free surface. For a fixed 
Crispation number C, the effect of gravity force is 
intensified, as the Bond number Bo increases. As 
shown in Fig. 4(a), the critical condition ]M,I increases 
sensitively with 1:he Bond number Bo. 

For the pure Rayleigh-BCnard instability, M = 0, 
the corresponding marginal curves of stationary and 
oscillatory modes versus the wavenumber a are plot- 
ted in Fig. 5 for selected values of the Crispation 
number C, hen: we choose Pr = 1, Bo = 0.1 and 
Bi = M = Q = .T = 0. The stationary modes is 
shown to be insensitive to the Crispation number C, 
in contrast to the oscillatory modes. The critical Ray- 
leigh number R, of oscillatory modes decreases as the 
Crispation number C increases. For the stationary 
mode, the critical conditions R, and a, are 669.0484 
and 2.086, respectively, which coincides exactly with 
the previous results [l, 31. There always exists a Cris- 
pation number C,, such that, for C > C,,, the mini- 
mum Rayleigh number R for the oscillatory mode is 
smaller than that for the stationary mode and the pure 
Rayleigh-Btnard instability sets in oscillatory, where 
C,, = 1.57x 1O--3 for Pr = 1, Bo = 0.1 and 
Bi = Q = g = 13. 

Figure 6 shows the critical Rayleigh number R, of 
stationary and oscillatory modes as a function of the 

Chandrasekhar number Q for selected values of C, 
here we choose Pr= 1, Bo=O.l and Bi=M= 
F = 0. As the Crispation number C increases, 
the reducing surface tension acts as a destabilizing 
effect to oscillatory modes. Also shown in Fig. 6, 
under the stabilizing effect of the magnetic field, 
there exist jumps on the Rayleigh-Benard instability 
from stationary modes to oscillatory modes, depend- 
ing on the Chandrasekhar number Q, for Q = 0, 
C,, = 1.57 x 10-3, and for Q = 20, C,, = 3.45 x 10p3. 

The critical conditions [MCI and frequency tic vs the 
Rayleigh number R for various values of Y are plot- 
ted in Fig. 7(a) and (b), and listed in Table 3 with 
Q = O,lO, here we choose C = 10m5, Pr = 0.02, 
Bo = lo-*, Bi = 0 and R = CL-1000. Taking into 
account effects of thermal buoyancy and surface 
tension, marginal curves on the ([MCI, R)-plane do 
satisfy, for both stationary and oscillatory modes, the 
linear relation of the decreasing lMcl with the increas- 
ing Rayleigh number R, irrespective of the Taylor 
number Y. As shown in Fig. 7(b), the critical fre- 
quency oic decreases monotonically with the Rayleigh 
number R, provided Q = 10, at which the magnetic 
field is the dominant stabilizing effect, however, it 
becomes very insensitive, provided Q = 0. 

CONCLUSIONS 

The onset of stationary and oscillatory modes of 
Benard-Marangoni instability subject to effects of 
rotation and magnetic field is analyzed numerically. 
The following results have been obtained. 

1. For the pure Marangoni convection, oscillatory 
modes could take place for negative values of the 
Marangoni number M only. For the Crispation 
number C > 1.57 x 10p3, there exist jumps on the 
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4.0 , 

2.5 0 

7 

MSoo I 0 200 400 600 mm 1000 @) 0 200 400 600 800 1000 

Rayleigh number. R Rayleigh number, R 
Fig. 7. Variations of critical conditions (a) IM,I and (b) crlc are plotted as function of R for several values of 9 on the 

oscillatory BCnard-Marangoni instability for C = 10e5, Pr = 0.02, Bo = 10m2 and Bi = 0. 

Table 3. Critical values of Marangoni number M,, a, and u,, for different values of R and I on the oscillatory instability of 
the BCnard-Maragoni convection (C = 10e5, Pr = 0.02, Bo = IO-’ and Bi = 0) 

Q=O 

1=0 F = 1000 I=2000 

R 
_ 

0 - 952.403 0.2015 2.0863 
100 -914.442 0.2016 2.0809 
200 - 876.464 0.2016 2.0737 
300 -838.471 0.2017 2.0682 
400 - 800.463 0.2017 2.0610 
500 - 762.438 0.2018 2.0554 
600 - 724.397 0.2018 2.0482 
700 - 686.341 0.2019 2.0426 
800 - 648.268 0.2019 2.0352 
900 -610.178 0.2020 2.0295 

1000 - 572.072 0.2020 2.0221 

- _ 
-994.175 0.2057 2.2490 
-956.511 0.2059 2.2455 
-918.837 0.2060 2.2403 
-881.153 0.2062 2.2368 
- 843.458 0.2063 2.2315 
- 805.752 0.2065 2.2279 
-768.036 0.2066 2.2226 
-730.310 0.2068 2.2189 
-692.573 0.2069 2.2135 
- 654.826 0.2071 2.2098 
-617.069 0.2072 2.2044 

Q=O 

--1031.131 0.2086 2.3826 
-993.712 0.2088 2.3793 
-956.286 0.2090 2.3759 
-918.852 0.2092 2.3725 
-881.410 0.2095 2.3708 
- 843.960 0.2097 2.3673 
- 806.503 0.2099 2.3639 
- 769.038 0.2102 2.3621 
-731.566 0.2104 2.3586 
- 694.086 0.2106 2.3550 
- 656.599 0.2108 2.3515 

0 -2423.121 0.2618 3.4562 
100 -2381.048 0.2614 3.4397 
200 -2338.937 0.2610 3.423 1 
300 - 2296.786 0.2605 3.4044 
400 - 2254.595 0.2601 3.3878 
500 -2212.364 0.2597 3.3712 
600 -2170.091 0.2593 3.3546 
700 -2127.776 0.2589 3.3380 
800 -2085.419 0.2585 3.3214 
900 -2043.018 0.2580 3.3027 

1000 - 2000.574 0.2576 3.2861 

-2474.677 0.2653 3.5902 -2523.837 0.2685 
-2433.026 0.2649 3.5738 - 2482.562 0.2681 
-2391.342 0.2645 3.5574 -2441.258 0.2678 
- 2349.625 0.2641 3.5409 -2399.926 0.2674 
- 2307.873 0.2638 3.5267 -2358.564 0.2671 
-2266.087 0.2634 3.5102 -2317.173 0.2667 
- 2224.266 0.2630 3.4938 -2275.752 0.2664 
- 2 182.409 0.2626 3.4774 - 2234.301 0.2660 
-2140.516 0.2622 3.4609 -2192.819 0.2657 
-2098.587 0.2618 3.4445 -2151.306 0.2653 
- 2056.621 0.2614 3.4281 -2109.761 0.2649 

3.6991 
3.6850 
3.6687 
3.6546 
3.6383 
3.6241 
3.6078 
3.5937 
3.5774 
3.5611 

Rayleigh-BCnard instability from stationary 
modes to oscillatory modes, depending on the 
Chandrasekhar number Q. 

2. The deformation of the upper surface does have 

significant influences on the occurrence of oscil- 
latory modes of the Benard-Marangoni instability. 
Smaller critical conditions IM,I and qc take place 
at larger values of the Crispation number C. 
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Effects of rotation and magnetic field do suppress 10. Davis, S. H. and Homsy, G. M., Energy stability theory 

the onset of convection and act as the stabilizing for free-surface problem : buoyancy-thermocapillary 

factors to the system. 
layers. Journal of Fluid Mechanics, 1980,98, 527-553. 

The system becomes more stabilizing, when the 
11. Benguria, R. D. and Depassier, M. C., On the linear 

stability theory of BCnard-Marangoni convection. Phys- 
Biot number Bi and the Bond number Bo increase. its of Fluids, 1989, l(6), 1123-l 127. 

The influences of the Prandtl number Pr on the 12. P6rez-Garcia, C. and Carneiro, G., Linear stability 

existence of oscillatory convection of the pure Mar- 
analysis of BCnard-Marangoni convection in fluids with 

angoni instability are important. The critical con- 
a deformable free surface. Physics of Fluids, 1991, A 3(2), 
292-298. 

ditions IM,I and B,, increase with the Prandtl num- 13. Veronis, G., Motions at subcritical values of the Ray- 
L,... D” leigh number in a rotating fluid. Journal of Fluid Mech- 

Marginal curves on the (IM,I,R)-plane do satisfy 
an& 1966,&l, 545-554. ” 

the linear relation of the decreasing [MCI with the 
14. Friedrich, R. and Rudraiah, N., Marangoni convection 

in a rotating fluid layer with non-uniform temperature 
increasing Rayleigh number R, irrespective of the gradient. Internation& Journal of Heat and Mm> Trans- 

Taylor number. fer. 1984,21,443449. 
15. Pearlstein, A. J., Effect of rotation on the stability of a 

doubly diffusive fluid layer. Journal of Fluid Mechanics, 
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